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ABSTRACT

The Pacific–North American pattern (PNA), North Atlantic Oscillation (NAO), and Arctic Oscillation

(AO) are three dominant teleconnection patterns known to strongly affect December–February surface

weather in the Northern Hemisphere. A partial least squares regression (PLSR) method is adopted in this

study to generate wintertime two-week statistical forecasts of these three teleconnection pattern indices for

lead times of up to five weeks over the 1980–2013 period. The PLSR approach generates forecasts for the

teleconnection pattern indices by maximizing the variance explained by predictor indices determined as

linear combinations of predictor fields, which include gridded outgoing longwave radiation (OLR), 300-hPa

geopotential height (Z300), and 50-hPa geopotential height (Z50). Overall, the PLSR models yield statisti-

cally significant skill at all lead times up to five weeks. In particular, cross-validated correlations between the

combined weeks 3–4 PLSR forecasts and verification for the PNA, NAO, and AO indices are 0.34, 0.28, and

0.41, respectively. The PLSR approach also allows the authors to isolate a small number of predictor patterns

that help shed light on the sources of prediction skill for each teleconnection pattern. As expected, the results

reveal the importance of tropical convection (OLR) for forecast skill in weeks 3–4, but the initial atmospheric

flow (Z300) accounts for a substantial fraction of the skill as well. Overall, the results of this study provide

promise for improving subseasonal-to-seasonal (S2S) forecasts and the physical understanding of predictability

on these time scales.

1. Introduction

Subseasonal forecasting for lead times between 10

and 30 days is in general a difficult task but one that has

been receiving increasing focus. At longer lead times, the

importanceof the initial conditions progressivelydiminishes,

and the impact of slowly varying boundary conditions

increases, though they have a moremodest impact on the

weather and climate. From the end-user perspective,

however, skillful subseasonal forecasting is of great im-

portance because it would provide a sound basis for ex-

tended decision-making in agriculture and food security,

water and energy management, and disaster risk re-

duction that could save lives and protect property.Corresponding author: Jiaxin Black, jiaxin.black@noaa.gov
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With the realization of the importance of subseasonal

forecasting, governmental agencies, together with the

scientific community, have increasingly invested re-

sources to improve the skill and to promote the utility of

subseasonal forecasts in recent years. In 2009, theWorld

Meteorological Organization (WMO) initiated a Sub-

seasonal to Seasonal (S2S) Prediction Project (https://

www.wcrp-climate.org/s2s-overview), and later laid

out a detailed research implementation plan. In addi-

tion, the U.S. National Academy of Sciences (NAS)

recently released a research agenda to achieve a vision

that S2S forecasts (forecasts made 2 weeks to 12 months

in advance) will become as widely used in a decade as

weather forecasts are today. In the United States,

President Obama’s administration announced a co-

ordinated effort to develop new extreme-weather out-

looks in the 15–30-day range, seeking to produce

actionable information products for intermediate time

scales at which climate change influences risk. As an

initial step toward these efforts in the United States, the

National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC) recently

began issuing experimental week 3–4 outlooks for

precipitation and temperature (http://www.cpc.

ncep.noaa.gov/products/predictions/WK34/), which

provide probabilities of temperatures and accumu-

lated precipitation being above normal or below

normal. With all these active engagements among

governmental agencies, the scientific community,

and the private sector, subseasonal forecasts are

becoming an increasingly important component in

climate prediction.

Skillful subseasonal forecasts generally rely on the

skillful prediction of the large-scale atmospheric circu-

lation, which is closely tied to large-scale teleconnection

patterns. These teleconnection patterns reflect large-

scale changes in the atmospheric wave and jet stream

patterns, and thus have strong impacts on temperature,

precipitation, and storm tracks over vast geographical

areas. In the Northern Hemisphere, prominent tele-

connection patterns that strongly affect the temperature

and precipitation, especially during wintertime, include

the Pacific–North American pattern (PNA; Horel and

Wallace 1981; Wallace and Gutzler 1981; Barnston and

Livezey 1987), North Atlantic Oscillation (NAO;

Barnston and Livezey 1987), and Arctic Oscillation

(AO; Thompson and Wallace 1998). Recently, Scaife

et al. (2014) showed that skillful predictions of the NAO

in a new forecast system leads to similarly skillful pre-

dictions of European winter surface climate. Therefore,

successful subseasonal forecasts over large portions of

the Northern Hemisphere rely on being able to skillfully

predict these dominant teleconnection patterns.

Studies over the past few decades have identified a

few potential sources of skill regarding atmospheric

teleconnection pattern forecasts that may operate at

lead times of more than two weeks. The first source is

tropical deep convection, particularly in association with

the Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972). The MJO, which has a natural time

scale of 30–70 days, has been shown to have a significant

impact on the extratropical circulation, especially during

wintertime within a time frame of 1–4 weeks, through

the excitation of poleward-propagating Rossby waves

(e.g., Hoskins and Karoly 1981; Karoly et al. 1989).

Specifically, both observations and idealized models

have shown that the PNA arises in response to the

tropical convection anomalies associated with MJO

(Knutson and Weickmann 1987; Ferranti et al. 1990;

Higgins and Mo 1997; Mori and Watanabe 2008;

Johnson and Feldstein 2010; Moore et al. 2010; Roundy

et al. 2010; Franzke et al. 2011; Seo and Son 2012; Yoo

et al. 2012a,b; Riddle et al. 2013). Other studies identi-

fied significant relationships between MJO-related

tropical convection and North America wintertime

surface weather (Mo and Higgins 1998; Higgins et al.

2000; Yao et al. 2011; Rodney et al. 2013; Johnson et al.

2014; Lin 2015; DelSole et al. 2017). Similarly, studies

also have linked the MJO with the excitation of the

NAO and the closely related AO, as well as the associ-

ated surface weather in the Atlantic–European sector

and Arctic region (Vecchi and Bond 2004; Cassou 2008;

L’Heureux and Higgins 2008; Lin and Brunet 2009; Lin

et al. 2009, 2010). The studies above indicate that the

MJO may contribute to skillful subseasonal forecasts of

atmospheric teleconnection patterns and the associated

extratropical surface weather.

In addition to the MJO, large convective anomalies

over the tropical Pacific associated with El Niño–
Southern Oscillation (ENSO) are also known to excite

extratropical teleconnection patterns through the same

basic Rossby wave train mechanism as with the MJO,

such that El Niño (La Niña) results in a positive (nega-

tive) PNA-like response (Horel and Wallace 1981;

Wallace and Gutzler 1981; Trenberth et al. 1998; Johnson

and Feldstein 2010). Additionally, observational studies

(Moron and Gouirand 2003; Pozo-Vázquez et al. 2001,

2005) and model simulations (Merkel and Latif 2002;

Gouirand et al. 2007; Li and Lau 2012) indicated that

ENSO may excite an NAO-like teleconnection over the

North Atlantic–European sector.

A potential source of predictability from the extra-

tropics is stratospheric forcing. Baldwin and Dunkerton

(1999) provided evidence of downward propagation of

zonal wind anomalies from the stratosphere to the tro-

posphere over the course of ;3 weeks, which was
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followed by an NAO- or AO-like response in the tro-

posphere. Model simulations have reproduced a nega-

tive NAO or AO response to weakened stratospheric

winds on seasonal and longer time scales (Norton 2003;

Scaife et al. 2005; Scaife and Knight 2008). This provides

hope that the stratospheric downward coupling could

be a useful predictor for subseasonal forecasts, particu-

larly for anomalies associated with the NAO and AO.

The initial tropospheric flow pattern may be another

potential source of skill for these lead times, although

this source remains relatively unexplored. This promise

takes root in studies that identified particular mid-

latitude wavelike initial flow patterns, which are closely

associated with the jet stream waveguide effect (e.g.,

Branstator 1983, 2002), serving as precursors to extra-

tropical circulation anomalies (Feldstein 2002; Mori and

Watanabe 2008; Moore et al. 2010; Franzke et al. 2011;

Teng et al. 2013; Risbey et al. 2015; McKinnon et al.

2016; Teng and Branstator 2017). In addition, Goss and

Feldstein (2015) demonstrated that the extratropical

response to tropical convection, particularly in associa-

tion with the MJO, is sensitive to the midlatitude initial

atmospheric flow. These studies provide hope that the

diagnosis of the midlatitude initial atmospheric flow can

be leveraged for weeks 3–4 forecasts of teleconnection

patterns.

Although previous studies identify potentially im-

portant sources of skill for the dominant Northern

Hemisphere teleconnection patterns, questions still re-

main about how much skill we can expect and how each

predictor contributes to skill for lead times beyond

two weeks. Motivated by these questions, this study

employs a statistical approach to predict wintertime

prominent Northern Hemisphere teleconnection pat-

terns (i.e., PNA, NAO, and AO), at different lead times

within weeks 1–5, and to identify the primary sources of

skill for these teleconnection patterns. Specifically, we

focus on the skill and its sources at a lead time of weeks

3–4 to be consistent with the coordinated effort within

theUnited States to developnewoutlooks in the 15–30-day

range, which includes the new CPC experimental week

3–4 outlooks. Our statistical approach, based on par-

tial least squares regression (PLSR), establishes a skill

benchmark for dynamical forecast models and pro-

vides a small subset of dominant predictor patterns for

each teleconnection pattern. We find that the statisti-

cal model yields significant skill for all teleconnection

patterns at almost all lead times within weeks 1–5,

providing promise for improving subseasonal-to-seasonal

forecasts. Further investigation suggests that the sig-

nificant skill at weeks 3–4 can be primarily attributed

to the impact of tropical convection and extratropical

initial flow.

The remainder of the paper is organized as follows.

Section 2 provides the data sources and a detailed de-

scription of the statistical method that is used to gener-

ate the forecasts. Section 3 evaluates the prediction skill

against observations and a representative state-of-the-

art dynamical model, followed by the exploration of

sources of predictability at a lead time of 3–4 weeks in

section 4. Finally, section 5 summarizes the results and

discusses their implications.

2. Data and methodology

a. Data sources

We use the daily time series for the PNA, NAO, and

AO indices from the NOAA/CPC spanning the period

of 1980–2013. To be consistent with the CPC’s current

weeks 3–4 outlook, a low-pass filter (14-day running

mean) is applied to the time series before isolating data

from December–February (DJF) for wintertime fore-

casts. The filtered wintertime indices of the PNA, NAO,

and AO are the target predictands, and therefore our

forecasts are 2-week averages.

In this study, we generate statistical forecasts for

teleconnection pattern indices based on a set of three-

dimensional meteorological variables referred to as

predictor fields or simply predictors. As discussed in the

introduction, previous studies have demonstrated that

tropical convection anomalies, the midlatitude initial

tropospheric flow, and for the NAO and AO, the initial

stratospheric flow can have strong impacts on the ex-

tratropical circulation anomalies. To capture the first

two effects for PNA, NAO, and AO forecasts, we con-

sider tropical outgoing longwave radiation (OLR) and

hemispheric 300-hPa geopotential height (Z300) as the

first two predictor fields. We use daily NOAA in-

terpolated OLR data (Liebmann and Smith 1996),

covering the tropics (308S–308N). All pressure-level

variables listed below are from the National Centers

for Environmental Prediction–Department of Energy

Atmospheric Model Intercomparison Project Re-

analysis 2 (NCEP-DOE AMIP-II R-2; Kanamitsu

et al. 2002). For daily Z300, we focus on the spatial

domain covering the entire NorthernHemisphere and the

SouthernHemisphere tropics (308S–908N). To incorporate

the potential source of predictability from stratospheric

downward coupling, we also include Northern Hemi-

sphere 50-hPa geopotential height (Z50) as a third pre-

dictor field for NAO and AO forecasts (but not for PNA

forecasts). All predictor fields have a spatial resolution of

2.58 3 2.58; however, to increase the computational effi-

ciency, all predictor fields are linearly interpolated onto a

58 3 58 grid for the statistical forecasts.We conducted tests

to verify that the interpolation to the coarse grid did not
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have a noticeable impact on forecast skill. The seasonal

cycle, which is defined as the calendar day means from

1980 to 2013, is removed from all predictor fields, and the

resulting anomalies are standardized prior to generating

forecasts.

To examine the linkage betweenRossby wave activity

propagation and extratropical circulation anomalies,

300-hPa wave activity fluxes (Takaya and Nakamura

2001) are calculated. The horizontal component of the

wave activity flux (W, hereafter WAF) is given by

W5
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x 2cc
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where c is the perturbation streamfunction, and the

subscripts denote partial derivatives. HereU5 (U,V) is

the 300-hPa time-mean horizontal wind vector for the

winter. The winter seasonal mean 300-hPa WAF and

streamfunction averaged over 1980–2013 are plotted in

Fig. 1. The climatological WAF features strong meridi-

onal wave activity propagation over the North Pacific,

North Atlantic, and Eurasia, emanating from the exit

regions of the climatological jets.

For comparison with the statistical forecasts, we also

evaluate the prediction skill for a set of 45-day retro-

spective forecasts (hindcasts) from the NCEP’s Climate

Forecast System, version 2 model (CFSv2; Saha et al.

2014), a state-of-the-art dynamical forecast model. The

CFSv2 model is a fully coupled model consisting of at-

mospheric (NCEP Global Forecast System), oceanic

(Geophysical Fluid Dynamics Laboratory Modular

Ocean Model, version 4.0), land surface (Noah land

surface model), and sea ice models. The hindcasts are

initialized at 6-h intervals from 1999 to 2010 and run out

for 45 days. For each day, the ensemble mean of four

members is calculated. To construct the index for the

AO from model outputs, we follow the CPC’s definition

for the AO, which is the projection of the daily 1000-hPa

geopotential height anomalies poleward of 208N onto

the loading pattern of theAO from 1979 to 2000. For the

PNA and NAO, we construct indices from the hindcast

outputs using a different, yet similar, definition to that of

the CPC. The hindcast PNA index is constructed by

projecting the daily 500-hPa geopotential height anom-

alies onto the leading empirical orthogonal function

(EOF) of wintertime monthly 500-hPa geopotential

height from 1979 to 2008 for the domain of 108–808Nand

1608E–608W. Similarly, the hindcast NAO index is

constructed by projecting the daily 500-hPa geopotential

height anomalies onto the leading EOF of wintertime

monthly 500-hPa geopotential height over the same time

period for the domain of 208–858N and 808W–08. As in

the statistical forecasts, we focus on evaluating the

2-week-averaged CFSv2 hindcasts for the PNA, NAO,

and AO indices during winter months.

b. Generation of statistical forecasts for
teleconnection pattern indices

We generate the 2-week statistical forecasts for the

PNA,NAO, andAO indices in wintermonths from 1980

to 2013. The forecast period covers lead times from

weeks 1–2 to approximately weeks 4–5.

The method of PLSR (Wold 1966) is adopted to gen-

erate the statistical forecasts. Several studies have dem-

onstrated the utility of PLSR in geosciences for diagnostic

and forecast purposes (Kalela-Brundin 1999; McIntosh

et al. 2005; Abudu et al. 2010; Smoliak et al. 2010;Wallace

et al. 2012; Smoliak et al. 2015). For a univariate pre-

dictand, PLSR essentially finds linear combinations of

predictors (three-dimensional fields in this case) that

maximize the variance explained in a predictand time

series (a teleconnection pattern index in this application)

through an iterative process. Therefore, in the present

application, PLSRmight be considered ameans of finding

‘‘optimal’’ regressors (hereafter referred to as PLS com-

ponents) to be used in an iterative linear regression,

where these PLS components are based on linear com-

binations of high-dimensional dataset. This approach is

attractive in the present application because we have

prior understanding of the important predictor fields

(OLR, Z300, and Z50) but not necessarily the specific

predictor patterns that are optimal for exciting each

teleconnection pattern at lead times beyond two weeks.

PLSR provides a means of determining these dominant

predictor patterns and associated PLS components, and

for developing a linear model to predict the teleconnec-

tion pattern index based on these predictor patterns.

The iterative PLSR procedure is described as follows.

Starting with a set of ranked area-weighted predictor

fields, we

1) calculate the grid-by-grid correlation coefficients bet-

ween the standardized anomalies of the first predictor

FIG. 1. Wintertime (DJF) mean 300-hPa streamfunction (107m2 s21,

shadings) and wave activity flux (m2 s22, vectors) over 1980–2013.
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field and the predictand, obtaining a correlation map

(i.e., predictor pattern);

2) obtain a time series (i.e., the first PLS component of

the first predictor) by projecting the first predictor

field onto the correlation map obtained in step 1;

3) use conventional least squares fitting and regress the

predictand on the first PLS component (the time

series in step 2) to obtain the first partial regression;

4) linearly remove the first PLS component from

both predictand and all predictor fields. The residual

predictand and predictor fields become the new

predictand and predictor fields;

5) repeat steps 1–4 to obtain higher ranked PLS com-

ponents of the first predictor, until a stoppage

criterion is met; and

6) repeat steps 1–5 to obtain PLS components for the

other predictors.

The final regression that links the predictor fields to the

predictand is the sum of all partial regressions from each

PLS component of each predictor. Each successive it-

eration explains more of the predictand variance. The

PLSR approach also allows us to isolate PLS compo-

nents that are linearly independent from each other,

which may facilitate attribution of different physical

processes that provide sources of prediction skill for the

teleconnection patterns (limitations are discussed in

section 5). For more discussion of the PLSR methodol-

ogy, see, for example, Abdi (2010) and Smoliak et al.

(2015). A natural question that therefore arises is, how

many PLS components do we retain for each variable?

We discuss the criteria we use in section 2c.

c. Cross validation

As mentioned previously in step 5 of the PLSR

approach, a stoppage criterion has to be defined to de-

termine the optimal number of PLS components of each

predictor. If too many PLS components or predictor

variables are retained, then our PLSR model will be

overfitted, resulting in poor forecasts when applied to

independent data. We choose to conduct a cross-

validated screening procedure to determine the opti-

mal number of components to retain for each predictor.

Whenever a screening procedure is applied, however,

care must be taken to guard against artificial skill, which

refers to biased estimates of skill arising due to the in-

clusion/exclusion of certain predictors without any cross

validation on the screening procedure (DelSole and

Shukla 2009). As pointed out by Michaelsen (1987),

both the screening and the model building procedure

must be cross validated; therefore, we adopt a double

cross-validation approach in this study to ensure that the

data used in our forecast evaluations remain completely

independent of the model building process. The first

(inner) cross validation determines the optimal number

of PLS components of each predictor for the construc-

tion of the PLSR model, while the second (outer) cross

validation validates the forecast skill of the constructed

PLSR model in predicting an independent sample.

For the first (inner) cross validation, we calculate the in-

cremental explained variance based on a repetition of leave-

one-year-out sample data until each year is ‘‘left out’’ once.

The basic idea is that we increase the number of retained

PLS components for each predictor field until the

incremental variance becomes negative (i.e., the cross-

validated forecasts become worse as measured by ex-

plained variance). The incremental variance explained by

thekthPLScomponentof the lthpredictor, y0k,l, is definedby

y0k,l 5 y
k,l
, k5 1,

y0k,l 5 y
k,l
2 y

k21,l
, k. 1, (2)

where

y
k,l
5

 
12

y
k, l*

y
y

!
3 100%, l5 1,

y
k,l
5

 
12

y
k, l*

y
l21*

!
3

y
l21
*

y
y

3 100%, l . 1. (3)

Here yy is the total variance of the original predictand,

yk,l* is the residual variance of the predictand after re-

moving the predicted time series using k PLS compo-

nents for the lth predictor, and yl21* is the residual

variance after removing the predicted time series using

the previous l 2 1 predictor(s). A negative y0k,l indicates
an increase in the residual variance and decreasing

forecast performance in terms of the explained variance

of the predictand.We note that it is possible for y0k,l to be

negative for k 5 1, which would indicate that even the

leading PLS component does not yield skillful forecasts.

In that case, we reject the PLS component for that

particular predictor. In contrast, positive incremental

variance indicates additional variance explained by that

PLS component, and so the PLS component is retained.

In this sense, the sum of incremental variance explained

in the predictand is maximized by an optimal combina-

tion of PLS components and predictors.

Both the PLS components and predictors are pro-

cessed sequentially. For example, if OLR is the first

predictor, we first determine the number of OLR com-

ponents to retain. Then, we proceed to determine the

number of PLS components of the second predictor (i.e.,

Z300). By doing so, the first Z300 PLS component

captures the influence of Z300 that is linearly in-

dependent of all retained OLR components. We note
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that the change in forecast skill in terms of correlation

due to different sequential ordering of the predictors is

on the order of 0.01, so the sequential order of predictors

has little effect on the final skill. However, the predictor

order does impact the physical attribution owing to

collinearity between predictor fields. We elaborate on

this point in section 4 when we explore the sources

of skill.

Now that we have constructed a PLSR model with an

optimal number of PLS components and predictors, we

have to validate its forecast skill on an independent

sample, which is the purpose of the second (outer) cross

validation, performed similarly by withholding data one

year at a time.

To further illustrate the entire double-cross-validation

procedure, let us consider the forecast for the year 1985.

The PLSR forecasts are validated for December 1984–

February 1985, and the PLSR model is constructed from

all DJFs excluding 1985 (the training data). To construct

the PLSR model, the number of retained PLS compo-

nents for each predictor is determined with Eq. (2)

through a cross validation with the training data (the first

cross validation). After constructing the PLSRmodel, the

forecasts are made for DJF 1985. This same procedure is

carried out for each DJF until we have generated fore-

casts for each year. We then evaluate the forecasts for

each DJF (the second cross validation).

The procedure described above indicates that data

from years beyond the forecast year are included to

build and evaluate the statistical model. The justifica-

tion for this approach is that if the time scale of the

growth and decay of atmospheric teleconnection pat-

terns is on the order of 10 days (e.g., Feldstein 2000),

and if the processes responsible for the growth and

decay of these patterns do not change with time, then

the data from future years represent independent

samples that are just as valid as the data from previous

years for training the model. However, future data will

not be available for real-time forecasts, and so to test

the validity of our assumption, we repeat the PLSR

forecasts of teleconnection pattern indices for the pe-

riod of 1999–2010 (to be consistent with the CFSv2

output), using data only from 1980 until the year prior

to the forecast year. The results (not shown) indicate a

reduction (;0.1) in the correlations for the PNA and

NAO, especially for longer lead times, but a modest

increase (;0.04) of the AO correlation skill. There-

fore, the effect of removing future years from the

training data is mixed, and it remains unclear whether

such reduction in performance for the PNA and NAO

is due to the exclusion of future information or simply

due to a reduced sample size for model training. Since

the double cross validation should ensure the realistic

assessments on the forecast skill of PLSR approach, we

retain the approach that uses all available years for

model training.

We also note that the double cross validation de-

termines that the final forecasts of the teleconnection

patterns may be based on different combinations of

predictors and/or PLS components over different years.

This variation reflects the property that the prediction

model may be subject to underfitting or overfitting for

individual years due to the uncertainty in the optimal

number of PLS components for each predictor. How-

ever, because the forecast years remain separate from

the model-building process, our estimates of forecast

skill are likely to be more realistic than if we chose a

fixed number of PLS components and did not account

for the uncertainty in this number. For making physical

interpretations, we focus only on those relationships that

are robust across most years (see section 4). We list in

Table 1 the optimal number of PLS components for the

weeks 3–4 forecasts averaged over all years for each

predictor and each teleconnection pattern. It is worth

emphasizing again that since the optimal number can

vary from one year to another due to the double cross

validation, the averaged optimal number may not be an

integer. Overall, we find that a larger number of PLS

components of Z300 are desired for the construction of

the PLSR model. However, it is surprising to see that

although tropical convection anomalies are believed to

strongly impact the downstream PNA and NAO or AO

response, relatively few of the screened PLS compo-

nents of OLR are retained for the forecasts.

3. Prediction skill of PLSR forecasts

In the previous section, we discussed how the PLSR

model is constructed with an optimal number of PLS

components and predictors for each year’s forecast. In

this section, we evaluate the prediction skill of the

constructed PLSR models by first calculating the

TABLE 1. The optimal number (averaged over all years) of PLS

components to be retained for each predictor. The results are from

forecasts at a lead time of weeks 3–4.

Teleconnection

pattern Predictors

Averaged optimal number

of PLS components

PNA OLR 1

Z300 2.56

NAO OLR 0

Z300 1.88

Z50 0.12

AO OLR 0.09

Z300 2.06

Z50 0.06
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forecast biases, and verifying that the biases are on the

order of 0.001–0.01 at all lead times for all three tele-

connection patterns. We then calculate the correlation

coefficients r between forecasted and observed tele-

connection pattern indices at different lead times. We

show in Fig. 2 the correlations between PLSR-

forecasted and observed teleconnection pattern indices

(blue lines), and their box plots based on the resampled

data using a Monte Carlo approach, where the calendar

years of the predictand and the forecasted time series

are randomly reshuffled 1000 times. The PLSR forecasts

noticeably outperform the persistence forecasts (purple

lines) and climatological forecasts (black dashed lines)

at all lead times for the PNA and AO, while for the

NAO, the PLSR forecasts perform close to the clima-

tological forecasts and slightly worse than the persis-

tence forecasts at longer lead times. Here, climatological

forecasts are defined by the cross-validated calendar day

means of the teleconnection pattern index. The pre-

diction skill of PLSR forecasts decreases relatively

quickly for short lead times, as we would expect based

on the loss of skill associated with the initial conditions.

Beyond week 3, however, the PLSR forecast skill re-

mains rather stable. Specifically, at weeks 3–4, the cor-

relations between PLSR forecasts and observations for

the PNA, NAO, and AO are 0.34, 0.28, and 0.41, all of

which outlie the maximum correlation based on the re-

sampled data and therefore can be interpreted as sig-

nificantly different from zero. The prediction skill of the

CFSv2 hindcasts (yellow lines) over 1999–2010 and that

of the PLSR forecasts validated over the same period as

CFSv2 (green lines) for each teleconnection pattern are

also displayed in Fig. 2. The correlations validated over a

shorter period for PLSR forecasts are highly consistent

FIG. 2. Boxplots of the correlation between forecasts and observed wintertime (DJF) 2-week-averaged (top)

PNA, (middle) NAO, and (bottom) AO index time series at different forecast lead times. The boxplots are gen-

erated based on the reshuffled data using Monte Carlo approach described in section 3. The blue (green) lines

denote the correlation of PLSR forecasts evaluated during1980–2013 (1999–2010). The yellow lines denote the

correlation of CFSv2 dynamical forecasts evaluated during 1999–2010. The purple solid and black dashed lines

denote the correlation from persistence and cross-validated climatological forecasts, respectively.
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with those validated over the full period. For shorter

lead times (weeks 1–3), CFSv2 hindcasts show higher

prediction skill, as we might expect, given the impor-

tance of dynamical processes associated with the initial

condition details at these shorter lead times. For longer

lead times (;4 weeks onward), however, the PLSR

forecasts are able to perform comparably to, or even

outperform the CFSv2. Overall, we find that the PNA

and NAO forecast skill of CFSv2 and PLSR shows

moderate to strong improvements inweeks 3–4 compared

to those evaluated using CFSv1 by Johansson (2007); such

improvements in correlation can be up to;10.2 (;10.3)

for PLSR (CFSv2).

In addition, we evaluate and illustrate in Fig. 3 the

root-mean-square errors (RMSEs) of the PLSR fore-

casts evaluated over 1980–2013 (blue lines) and compare

them with those from CFSv2 hindcasts (yellow lines),

and cross-validated climatological (black dashed lines)

and persistence (purple lines) forecasts. We note

that the RMSEs of PLSR forecasts evaluated over

FIG. 3. The root-mean-square errors (RMSEs) of the forecasts of wintertime (DJF) (top) PNA, (middle) NAO,

and (bottom) AO index time series at different forecast lead times, evaluated over 1980–2013 unless stated oth-

erwise. The purple solid (black dashed) lines indicate the results from persistence (cross-validated climatological)

forecasts. The blue and yellow lines denote the results from PLSR forecasts and CFSv2 output (evaluated over

1999–2010), respectively.
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1999–2010, which are almost identical to those evaluated

over the full period, are therefore not displayed. Figure 3

shows that the PLSR forecasts have lower RMSEs than

the climatological and persistence forecasts at all lead

times for the PNAandAO. In weeks 3–4, PLSR forecasts

have comparable RMSEs to those of CFSv2 for all three

teleconnection patterns. Overall, the significant correla-

tions and the low RMSEs of the PLSR forecasts in weeks

3–5 provide promise that the sources of skill at these lead

times may provide statistical guidance for improving

subseasonal and seasonal forecasts.

We tested the sensitivity of forecast performance to

certain analysis choices, including the predictor/predictand

filtering and the training/validation data partitioning,

with a focus again on weeks 3–4. The evaluations of each

set of test forecasts are listed in Table 2. We first in-

vestigate whether different time intervals over which

the predictors are averaged affects the prediction skill.

We generate two other sets of test forecasts: one using

daily predictors and the other using 1-week averaged

(7-day running mean applied) predictors to predict

2-week averaged predictands. For the PNA, the pre-

diction skill of the PLSR forecasts is significantly in-

creased by applying a 2-week average to both the

predictands and predictors; on the other hand, the

forecast skill for the NAO and AO does not change

much with different time intervals over which the

predictors are averaged (the second through fourth

columns in Table 2). Because the skill is higher or

comparable with 14-day-averaged predictors, we use

14-day runningmean predictor data for the remainder of

the study.

We calculated the difference in skill between daily

and 14-day mean predictands. Christiansen (2005) pre-

viously found that statistical forecasts can be improved

substantially by averaging the predictand over 10 or

more days for extended-range lead times (up to 25 days).

Consistently, at a lead time of weeks 3–4, the prediction

skill of 2-week forecasts (the second through fourth

columns) of the teleconnection pattern indices is higher

than that of the daily forecasts (last column in Table 2).

We also attempted to increase forecast skill by in-

corporating an interaction term, which is defined as the

dot product of any two predictor fields. However, adding

interaction terms did not yield additional skill (not

shown). Additionally, to evaluate the importance of

underlying low-frequency variability and its impact on

prediction skill, we generated two sets of test forecasts

using the first (last) 75% of the data to predict the last

(first) 25% of the data and their prediction skill is listed

in the fifth and sixth columns of Table 2. We find that for

the PNA, the prediction skill does not vary much among

the two sets of test forecasts, and they are relatively close

to those from the forecasts using full record. However,

for the NAO and AO, the forecasts of the last 25% of

the data (column 5) are much more skillful than the

forecasts of the first 25% of the data (column 6). The

considerably better forecast skill of the NAO and AO

for the last 25% of the data suggests considerable low-

frequency variability of the predictand–predictor re-

lationships and forecast skill. Similar results were also

found in dynamical models (e.g., Scaife et al. 2014; Kang

et al. 2014). The source of this variability is not

immediately clear.

Although the PLSR forecasts for the PNA, NAO, and

AO yield robust and significant skill in weeks 3–4 and

even longer lead times, we also note some unexpected

differences among the forecasts of the teleconnection

patterns. For example, the source of skill for the PNA is

thought to be most closely related to tropical Pacific

convection, and Table 1 confirms that an OLR compo-

nent is always retained for PNA forecasts but not for

NAO or AO. The PLSR forecasts of the PNA, however,

do not have the highest correlations. In fact, both the

PLSR and CFSv2 forecasts demonstrate the highest skill

for theAO forecasts. In addition, the forecast skill of the

NAO is considerably lower than that of the AO, despite

the NAO often being viewed as a local manifestation of

TABLE 2. Correlation coefficients between PLSR forecasts and observed teleconnection pattern indices in weeks 3–4. The second

through sixth columns give the correlation of PLSR forecasts where no running mean (rm), 7-day, and 14-day running mean is applied to

the predictors to forecast 2-week averaged predictands. The subcolumns under ‘‘14-rm’’ list correlation coefficients of forecasts for full

record (1980–2013), last 25% (2005–13), and first 25% (1980–88) of the teleconnection pattern indices. The last column gives the cor-

relation of PLSR forecasts where unfiltered predictands and predictors are used.

Teleconnection

pattern

2-week averaged predictands

Predictors

Daily predictands

and predictorsNo rm 7 rm

14 rm

Full forecasts Last 25% forecasts First 25% forecasts

PNA 0.18 0.19 0.34 0.26 0.33 0.16

NAO 0.22 0.24 0.28 0.25 0.12 0.11

AO 0.42 0.43 0.41 0.54 0.16 0.33
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the planetary-scale AO. In fact, the correlation between

the two indices during DJF is relatively modest (0.69)

during 1980–2013. These results suggest that a large

fraction of the AO variance unassociated with the NAO

may be predictable in weeks 3–4. Overall, the promising

forecast skill out to week ;5 based on the PLSR model

potentially can help to improve forecasts on subseasonal

and seasonal time scales.

4. Sources of prediction skill from the PLSR model

The PLSRmodel is shown to be significantly skillful in

forecasting the teleconnection pattern indices in weeks

3–4; therefore, our next goal is to investigate the sources

of prediction skill in the statistical model. As indicated

by Table 1, an advantage of the PLSR approach is that it

decomposes the forecasts and their skill into a generally

small number (,3) of PLS components and their cor-

responding predictor patterns. This helps us focus on the

dominant physical processes that provide skill.

While the double cross validation largely avoids

overfitting and artificial skill due to non-cross-validated

predictor screening, it yields predictor patterns (spatial

patterns associated with their corresponding PLS com-

ponents; the correlation maps described in step 1 of the

previous section) that can be different from one year to

another, which would be a disadvantage for physical

interpretations of sources of predictability. Therefore,

we choose to carry out lagged regression analysis as an

alternative approach described as follows. We first

specify a priori the number of PLS components to retain,

which means the inner cross validation used to de-

termine the optimal number of PLS components to be

retained is absent. We generate leave-one-year-out

cross-validated forecasts following the procedure out-

lined in section 2b. We then calculate how much skill is

gained by adding an additional PLS component. Next,

we subtract the forecasted teleconnection pattern index

without this additional component from the forecasts

with this additional component to obtain a residual in-

dex time series. For example, if we retain one OLR

component followed by adding one Z300 component,

then the residual index time series for the OLR com-

ponent (OLR1) would simply be the forecasted index

time series using only OLR1; the residual index time

series for the Z300 component (Z3001) would be the

forecasted index time series using both OLR1 and Z3001
minus the forecasted index time series using only OLR1.

We then regress meteorological fields on the residual

index time series at different negative lag times to ex-

amine the evolutions of the meteorological variables

associated with a particular PLS component. Because

of the 2-week averaging, the start time centered at

lag5222 days corresponds to forecast initialization at a

lead time of weeks 3–4. Similarly, lag 5 0 days corre-

sponds to the 2-week period that is centered at the

forecast validation time. By carrying out the procedure

in this manner, we identify cross-validated patterns that

not only pass the screening procedure but also reflect

sources of predictability that are linearly independent

from each other and that contribute to additional skill in

the final forecasts. To test the statistical significance of

the regression coefficients, we adopt an approach with

adjusted standard error and adjusted degrees of freedom

as outlined in Santer et al. (2000).

In Table 3, we evaluate the prediction skill of PLSR

forecasts r, the change in prediction skill Dr, and the

explained incremental variance by successively adding

an extra PLS component in the lagged regression anal-

ysis described above. It is worth emphasizing that since

we specify whether or not to retain a particular PLS

component in this procedure, the first (inner) cross

validation, which is used to determine the optimal

number of PLS components and predictors, is absent.

As a result, the PLSR forecasts might seemingly have

higher skill than those with double cross validation re-

ported in the final forecasts. Let us take PNA forecasts

as an example. If we choose to retain three Z300 PLS

components, r 5 0.39 (Table 3), which is higher than

r 5 0.34 with double cross validation mentioned in

TABLE 3. Evaluation of PLS forecasts when adding each PLS

component successively in weeks 3–4. The subscripts denote the

rank of PLS component of each predictor. Here r and Dr stand for

the correlation and change in correlation by adding the PLS

component in question. The incremental variance [as defined in

Eq. (2)] explained by each PLS component of each predictor is

listed in the fifth column. The PLS components explaining positive

incremental variance are highlighted in boldface fonts; for these

PLS components, in the last column we list the pattern correlation

(rp) between Z300 anomalies at forecast validation time and the

corresponding teleconnection pattern.

Pattern

PLS

component r Dr
Incremental

variance (%) rp

PNA OLR1 0.26 — 6.18 0.77

Z3001 0.28 10.02 0.12 0.52

Z3002 0.37 10.08 2.00 0.20

Z3003 0.39 10.02 21.36 —

NAO Z3001 0.21 — 3.92 0.65

Z3002 0.31 10.10 21.74 —

Z501 0.29 20.02 21.45 —

Z502 0.33 10.04 5.03 0.70

AO OLR1 0.20 — 22.29 —

OLR2 0.29 10.09 4.99 0.37

Z3001 0.28 20.01 21.07 —

Z3002 0.39 10.11 6.65 0.58

Z3003 0.40 10.01 24.67 —

Z501 0.42 10.02 0.68 0.31

Z502 0.41 20.01 20.87 —
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section 3. However, we see fromTable 1 that the optimal

number of Z300 for PNA is smaller than three, which

means that the third PLS component of Z300 is not re-

tained for each year’s forecast. Therefore, a seemingly

higher skill would be concluded if we chose to retain

three Z300 PLS components; however, we have no a

priori reason to assume three retained components, and

so we emphasize the concept that without cross vali-

dating the model building procedure, we would in-

troduce artificial skill.

Overall, we find that the number of PLS components

that explain positive incremental variance for each

teleconnection pattern index in Table 3 is mostly con-

sistent with the optimal number listed in Table 1. In

addition, PLS components that explain more positive

incremental variance typically help improve the fore-

casts more, as reflected by both the higher Dr1 and the

positive pattern correlations (rp) between the associated

Z300 regression patterns and the corresponding tele-

connection loadings at forecast validation time. There-

fore, we focus on the regression coefficients associated

with the PLS components that explain positive in-

cremental variance (highlighted in bold) in Table 3,

unless noted otherwise.

a. PNA

Consistent with expectations rooted in previous

studies, we find that OLR is a skillful predictor of the

PNA for weeks 3–4. The OLR regression pattern

associated with the first OLR PLS component (OLR1)

features a dipole pattern with enhanced convection in

the central equatorial Pacific and suppressed convection

over the Maritime Continent (Fig. 4). Such a pattern of

OLR anomalies is reminiscent of a prominent El Niño
signature, which is supported by the relatively large

lagged correlation (.0.6) between the Niño-3.4 index

and the residual index time series for OLR1 throughout

the weeks 3–4 period, although the influence of MJO

convection may be mixed within the regression pattern.

Accordingly, the extratropical response is a classic wave

train pattern originating over the eastern tropical Pacific

and propagating downstream into North America and

North Atlantic, projecting onto a positive PNA pattern

that persists through weeks 3–4 (Fig. 5, contours). The

regression patterns for the WAF (Fig. 5, vectors) show

strong WAF anomalies in the eastern Pacific, which are

approximately collocated with the Z300 anomalies, as-

sociated with positive PNA forecasts; meanwhile, there

are also strong WAF anomalies downstream in the

North Atlantic and Europe associated with the positive

PNA. Such features are consistent with the 300-hPa

streamfunction composites of the positive PNA re-

ported in previous studies (e.g., Feldstein 2002;Mori and

Watanabe 2008; Franzke et al. 2011). In general, it can

be inferred from OLR1 that the statistical model is able

to capture and take advantage of the persistence of the

PNA associated with tropical heating, predominantly

ENSO episodes, to generate skillful forecasts.

The skill of PNA forecasts for weeks 3–4 based solely

on a single OLR PLS component is r 5 0.26 (Table 3).

This value is substantially lower than the skill with all

screened PLS components of predictors (r 5 0.34),

which means that the initial extratropical flow (Z300)

FIG. 4. Lagged regression coefficients of 2-week-averaged OLR anomalies (Wm22) associated with OLR1 for

PNA forecasts. The stippling denotes statistical significance at the 10% level. The following conventions apply from

this figure and all subsequent figures: the coefficients are scaled by the standard deviation of the basis time series for

regression; the number of lag days indicates the centered day of a 2-week period, therefore, lag5 0 day corresponds

to the 2-week period centered at the forecast validation time, while lag 5 222 days corresponds to forecast ini-

tialization at a lead time of weeks 3–4.

1 Since the regression model is cross validated, there is not

necessarily a one-to-one correspondence between r and explained

variance or between Dr and incremental variance in Table 3.
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must account for the additional gain in skill. We next

examine the lagged regression coefficients of Z300 as-

sociated with the first Z300 PLS component (Z3001;

Fig. 6, contours). The overall evolution of the patterns

demonstrates a phase transition from the negative PNA

at weeks 3–4 lead to the positive PNA at forecast vali-

dation time. Based on the previous findings that MJO

phases 1–3 (5–7) are followed 7–10 days later by the

negative (positive) PNA (Mori and Watanabe 2008;

Johnson and Feldstein 2010; Moore et al. 2010; Roundy

et al. 2010; Franzke et al. 2011; Yoo et al. 2012b; Riddle

et al. 2013; Goss and Feldstein 2015), we expect that the

phase transition of the PNA would be closely related to

the phase change of the MJO. However, there is little

change in the associated OLR anomaly patterns (not

shown). On the other hand, we see in Fig. 6 a clear cir-

cumglobal wavelike pattern in the midlatitudes, which

was shown to be closely associated with the waveguide

of troposphere jets (e.g., Branstator 1983, 2002). In the

North Atlantic, we see a positive NAO pattern and a

dipole pattern resembling Ural blocking (UB) over

Eurasia, which seems to capture the close connection

between positive NAO events and UB events that

was previously reported (e.g., Luo et al. 2016a,b).

Meanwhile, the positive center of a negative PNA-like

structure over the northern Pacific at forecast initiali-

zation gradually moves equatorward, and a negative

center forms over the Bering Sea. These two anomaly

centers, together with the disturbances over the North

America–North Atlantic sector, form a positive PNA-

like structure. Overall, the extratropical initial flow, in-

dependent of the MJO, seems to be responsible for the

phase change of the PNA captured in the regression

patterns.

The second Z300 PLS component (Z3002) accounts

for even more skill than Z3001 (Table 3). The regression

patterns of the Z300 anomalies associated with Z3002
(Fig. 7, contours) show that wavelike anomalies are

mostly located in mid- and high latitudes, which align

quite well with zones of strong WAF anomalies (Fig. 7,

vectors). Meanwhile, the associated regression patterns

of tropical OLR anomalies are weak and disorganized

(not shown). These findings suggest that Z3002 captures

processes internal to the extratropical atmosphere.

Specifically, a negative NAO-like pattern that extends

eastward toward the Ural Mountains can be seen, with

the anticyclonic anomaly center being dominant, though

it is more confined in space. More importantly, we see in

FIG. 5. Lagged regression coefficients of 2-week- averaged Z300 anomalies (m, contours) and WAF (m2 s22,

vectors) associated with OLR1 for PNA forecasts. The green stippling and thickened vectors denote the 10%

significance of Z300 anomalies and WAF, respectively.
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Fig. 7 a typical pattern of upper-tropospheric variability

near the time-averaged jet—a meridionally confined and

zonally elongated north–south dipole over Eurasia in the

vicinity of the Asia jet. Meanwhile, we see in midlatitudes

that wave activity propagates across the North Pacific and

NorthAmerica, revealing a pattern that is reminiscent of a

positive PNA pattern up to approximately lag 210 days.

The waveguide structure over East Asia and the North

Pacific, including the downstream PNA pattern, are con-

sistent with previous studies (e.g., Hoskins and Ambrizzi

1993; Risbey et al. 2015; Teng and Branstator 2017), in-

dicative of the fundamental role of the midlatitude back-

ground flow in PNA development (Feldstein 2002; Mori

andWatanabe 2008; Franzke et al. 2011;Risbey et al. 2015;

Teng and Branstator 2017).

b. AO

Next, we examine the regression patterns associated

with the PLS components of OLR, Z300, and Z50 that

account for most of the AO forecast skill for weeks 3–4.

AO forecasts based on the first OLR PLS component

(OLR1) only yield positive skill in terms of correlation

(r 5 0.20) but negative skill in terms of explained in-

cremental variance (22.29%) (Table 3). Positive cor-

relation skill but negative explained variance indicates

overconfident forecasts (i.e., the variance of the fore-

casts is too high relative to the correlation). The negative

incremental variance is also the reason that OLR is

rarely retained as a predictor of the AO (Table 1).

However, considering the relatively high prediction skill

when including OLR1, and the strong pattern correla-

tion between its associated regression pattern of Z300

and the AO (rp 5 0.54) at forecast validation time,

we choose to combine OLR1 and OLR2 (OLRC 5
OLR1 1 OLR2) to examine the impact of tropical

convection on AO forecasts. The regression patterns

of OLR anomalies associated with OLRC for the AO

(Fig. 8) depict convection anomalies that resemble a

prolonged MJO phase ;1–3 with weakening amplitude

over time. In response, a clearwave train can be observed

that originates in the tropical Pacific and meanders

downstream into North America, the North Atlantic,

and eventually into Eurasia, projecting onto a negative

PNA, a positive NAOandAOpattern, and aUB pattern

(Fig. 9, contours). Consistently, strong WAF anomalies

(Fig. 9, vectors) can be observed near the centers of the

Z300 anomalies. These findings reflect the expected

source of predictability for theNAOandAO fromMJO-

related tropical Pacific convection (e.g., Cassou 2008;

L’Heureux and Higgins, 2008; Lin et al. 2009).

FIG. 6. Lagged regression coefficients of 2-week- averaged Z300 anomalies (m, contours) and WAF (m2 s22,

vectors) associated with Z3001 for PNA forecasts on selected lag days.
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Apart from the tropical influence, the second Z300

PLS component (Z3002) also contributes to substantial

skill in terms of improvement in correlation (Dr510.11)

and explained variance (16.65%, Table 3). We there-

fore examine the Z300 regression pattern associated

with Z3002, which shows a northern Eurasian wave train

and a prominent West Pacific (WP)–North Pacific Os-

cillation (NPO) pattern (Wallace and Gutzler 1981;

Nigam 2003; Linkin and Nigam 2008; Nigam and Baxter

2015) at forecast initialization time (Fig. 10, top-left

contours). Large regression coefficients of WAF are

collocated with the northern Eurasian wave train

(Fig. 10, vectors), and both persist through the first half

of the lagged regression period. These results appear to

agree with Branstator (2002), which showed that the

circumglobal waveguide pattern induced by time mean

FIG. 7. Lagged regression coefficients of 2-week- averaged Z300 anomalies (m, contours) and WAF (m2 s22,

vectors) associated with Z3002 for PNA forecasts. The green stippling and thickened vectors denote the 10%

significance of Z300 anomalies and WAF, respectively.

FIG. 8. Lagged regression coefficients of 2-week- averaged OLR anomalies (Wm22) associated with OLRC for

AO forecasts. The stippling denotes statistical significance at the 10% level.
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FIG. 9. Lagged regression coefficients of 2-week- averaged Z300 anomalies (m, contours) and WAF

(m2 s22, vectors) associated with OLRC for AO forecasts. The green stippling and thickened vectors

denote the 10% significance of Z300 anomalies andWAF, respectively. The polar projections cover the

entire Northern Hemisphere.
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FIG. 10. Lagged regression coefficients of 2-week- averagedZ300 anomalies (m, contours) andWAF(m2 s22,

vectors) associatedwith Z3002 forAO forecasts. The green stippling and thickened vectors denote the 10%

significance of Z300 anomalies and WAF, respectively. The polar projections cover the entire Northern

Hemisphere.

2870 MONTHLY WEATHER REV IEW VOLUME 145



tropospheric jet has a noticeable north–south dipole

structure over the North Atlantic and projects onto the

positive NAO. Over Eurasia, a pattern reminiscent of

UB pattern can be seen, though the anticyclonic

anomaly is displaced westward and continues to move

westward during the lagged regression period. Further-

more, it is intriguing to see fromFig. 10 (contours) a two-

center AO pattern evolving into a monopole pattern.

Specifically, two negative Z300 anomaly centers exist at

forecast initialization time, with one over the Bering

Strait (which appears to also be the northern branch of

theWP/NPO) and the other over western Russia. While

the negative center over western Russia appears to un-

dergo stationary decay, the negative center over the

Bering Strait seems to gradually move eastward, merg-

ing with a newly emerging weak negative center over the

Davis Strait and southern Greenland, forming a single

negative Arctic anomaly. Meanwhile, a midlatitude

zonal belt of positive Z300 anomalies persists through-

out the entire composite period.

We note that in the final AO forecasts, virtually no

OLR PLS components are retained (Table 1); in this

case, we expect the lagged regression patterns associ-

ated with the first Z300 PLS component (Z3001) to

capture the influence of tropical convection. To verify

this, we repeat the lagged regression analysis with no

OLR components retained, and examine the regression

patterns associated with each PLS component. The re-

gression patterns of OLR associated with Z3001 bear

prominent signatures of La Niña (not shown), and the

corresponding Z300 regression patterns resemble those

in Fig. 9. Similarly, when no OLR components are re-

tained, the Z300 regression patterns associated with the

second Z300 PLS component (Z3002) also resemble

those in Fig. 10. In addition, the maximum skill of the

AO forecasts with the PLS components specified a priori

(rmax5 0.42, Table 3) is highly consistent with that of the

final forecast (r5 0.41). Based on these findings, we can

conclude that (i) when OLR components are not re-

tained, as in the final forecasts of the AO, the sub-

sequent Z3001 indeed captures the influence of tropical

convection; (ii) the decision whether or not to retain

OLR components has virtually no impact on the AO

forecast skill.

Although many studies focus on the role of the strato-

sphere in the long-lead predictability of the NAO and

AO, we find that the addition of a Z50 anomaly predictor

field only contributes minor improvements to the AO

forecast skill (Table 3). Nevertheless, it is worthwhile to

learn how the first Z50 PLS component (Z501) contrib-

utes toAO skill in weeks 3–4. Since previous studies have

shown that the coupling between stratosphere and tro-

posphere is manifested by downward propagation of

westerly anomalies, we examine the regression pattern of

the meridional–vertical cross section of the zonally aver-

aged zonal wind anomalies associated with Z501 (Fig. 11).

At forecast initialization time, there are significant west-

erly anomalies throughout the troposphere between 458
and 708N, which dominates the entire mid-/high-latitude

region of the Northern Hemisphere. To the south of the

westerly anomalies, there is a thin vertical channel of

weaker easterly anomalies. The subsequent evolution of

the lagged regression patterns generally captures the

persistence of the features described above and the gradual

retraction of the wind anomalies toward the stratosphere.

Overall, the regression patterns of the zonal wind

anomalies are consistent with the findings previously

reported in observational studies and model simulations

of the stratospheric influence on the troposphere (e.g.,

Black 2002; Song and Robinson 2004; Scaife et al. 2005),

but downward propagation of the stratospheric zonal

wind anomalies does not appear to play a major role in

weeks 3–4 NAO and AO forecasts, at least in the linear

statistical model that we use.

It is worth noting that due to the limitations of the

methodology, the minor improvement from Z501 to

the AO forecast skill may not accurately quantify the

stratospheric contribution to AO predictions for weeks

3–4. In particular, if stratospheric variability is linearly

related to the OLR or to the Z300 predictor patterns,

then the stratospheric influence may be attributed to the

OLR andZ300 predictors because those predictors were

screened prior to Z50. Upon examining the regression

patterns of zonal wind anomalies associated with OLRC

and Z3002, we find that the former have similar features

as in Fig. 11, although much less significant. Neverthe-

less, some linear relation between OLR predictor pat-

terns and stratospheric variability is indicated. Therefore,

the full potential of the usage of a stratospheric predictor

for weeks 3–4 NAO and AO forecasts is not completely

clear and is therefore worth additional pursuit.

c. NAO

Because the NAO is closely related to the AO but the

prediction skill is noticeably lower than those of the

PNA and AO (Table 3), we only briefly discuss the re-

sults for the NAO. Although the PLS components of

OLR do not pass the screening procedure (Table 1), we

find that the first Z300 PLS component (Z3001) captures

the influence of tropical Pacific convection on NAO

forecasts, predominantly associated with La Niña
episodes based on the pattern resemblance and the rel-

atively high anticorrelation (;20.5) between the Niño-
3.4 index and the residual index time series for Z3001
(not shown). The inability of the OLR PLS components

to pass the screening procedure might again be due to
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FIG. 11. Lagged regression coefficients of meridional–vertical cross section of zonally and 2-week-averaged zonal

wind anomalies (m s21) in the Northern Hemisphere associated with Z501 for AO forecasts. The contour lines are

at 0.5m s21 interval, with zero line highlighted in bold. The stippling denotes statistical significance at the 10% level.
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the fact that the OLR field tends to be noisier with more

spatial degrees of freedom than the Z300 field, and so it

may be more difficult for the OLR PLS components to

pass the screening procedure described in section 2.

While the MJO influence on the NAO response is often

emphasized, the linkage between ENSO and the NAO

has been somewhat inconsistent (e.g., Toniazzo and

Scaife 2006; Brönnimann 2007). Therefore, it is sur-

prising to observe a well-captured ENSO influence on

weeks 3–4 NAO forecasts.

The influence of the midlatitude background flow is,

however, not as evident in the regression patterns as-

sociated with Z3001. Despite that the second Z50 PLS

component (Z502) accounts for considerable amount of

incremental variance, its inclusion in the forecasts does

not significantly improve the skill (Table 3). Addition-

ally, zonal wind anomaly regression patterns associated

with Z502 are qualitatively similar to those for the AO

(Fig. 11), although much weaker and less significant in

the lower troposphere. The low forecast improvement

and insignificant regression patterns associated with

Z502 could again, at least partially, be due to the col-

linearity among the predictor fields as previously

discussed.

5. Summary and discussion

In this study, we examine the subseasonal wintertime

forecast skill and sources of predictability of the domi-

nant Northern Hemisphere teleconnection patterns, as

determined through a partial least squares regression

(PLSR) approach. Specifically, we generate 2-week

forecasts of the wintertime PNA, NAO, and AO in-

dices at different lead times of up to five weeks. We

consider potential predictor fields of tropical OLR

anomalies, tropical Northern Hemispheric Z300 anom-

alies for PNA forecasts, as well as Northern Hemi-

spheric Z50 anomalies for NAO and AO forecasts,

because we believe that these three fields can capture

the impacts of tropical convective heating, the mid-

latitude background flow, and stratospheric downward

coupling, which have been previously demonstrated to

be fundamental to the development of these telecon-

nection patterns. The PLSR forecasts perform compa-

rably to, or even outperform the benchmark of

dynamical models at lead times beyond approximately

three weeks. This suggests the plausibility of leveraging

statistical relationships and developing statistical or

hybrid dynamical–statistical tools to improve pre-

dictions. The sources of predictability in weeks 3–4 are

investigated using lagged regression analysis. As ex-

pected, tropical Pacific convection, including anomalies

related to ENSO and MJO activity, is an important

source of skill. In addition, the initial state of the mid-

latitude flow seems to contribute substantially to fore-

cast skill. However, more studies are needed to

understand the mechanisms through which the initial

flow exerts its impact onto the subsequent downstream

circulation.

In addition to the predictors mentioned above, we

note that other potential predictors have been pre-

viously explored. For the NAO and AO, there have

been studies (e.g., Rodwell et al. 1999; Rodwell and

Folland 2002; Hurrell et al. 2003; Folland et al. 2012;

Scaife et al. 2014; Smith et al. 2016) highlighting the

source of predictability from extratropical sea surface

temperatures (SST). Although most of these studies

focused on the predictability on longer, seasonal time

scales, we examined if ocean memory could provide any

prediction skill on subseasonal time scales. We replaced

tropical OLR anomalies with SST anomalies north of

308S as the first predictor, in the hope of capturing both

the impacts of tropical convection and extratropical

ocean forcing. However, the PLS components associ-

ated with SST anomalies did not contribute any addi-

tional skill. Similarly, Arctic sea ice concentration

anomalies, another potential predictor that has been

hypothesized as a source of subseasonal to seasonal

NAO and AO prediction skill (Alexander et al. 2004;

Folland et al. 2012; Scaife et al. 2014; Smith et al. 2016),

was also added to the candidate PLSR predictors.

Again, at lead times of 3–4 weeks, Arctic sea ice con-

centration anomalies did not contribute additional skill.

We also attempted to apply the PLSR approach to

summertime forecasts, although we expected lower

prediction skill since the Rossby wave source, mid-

latitude westerlies that facilitate Rossby wave propa-

gation, and ENSO signals are all much weaker during

summer. Indeed, the overall prediction skill for tele-

connection pattern indices is considerably lower, and

the skill drastically decreases beyond week 2 (not

shown). To refine the PLSR approach for potential op-

erational use, exploration of additional predictors may

be necessary, as is true for all other seasons.

Despite the promising prediction skill of the PLSR

approach, several limitations of the method should be

recognized. First, the potential collinearity among two

or more predictor fields can make it very difficult to

accurately attribute the source of predictability to a

particular predictor. For example, the lagged regression

results in section 4 show that there are cases where it is

difficult to completely disentangle the impact of OLR

and Z300 because of their close linkage. Second, being a

linear method, the PLSR approach is unable to capture

the nonlinearity, which might be crucial when studying

the teleconnections of ENSO and the combined MJO
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and ENSO influence (Hoerling et al. 2001; Toniazzo and

Scaife 2006; Roundy et al. 2010; Moon et al. 2011;

Johnson and Kosaka 2016) as well as stratospheric–

tropospheric coupling. Last, there is a tendency for

PLSR to overfit because not only the regression co-

efficients, but also the PLS components are sample de-

pendent. With the limited training data, the overfitting

could prohibit more PLS components from passing the

screening procedure and emerging as robust regressors.

Finally, although the results indicate that our statis-

tical approach has comparable prediction skill to a

current dynamical forecast model at lead times of

;3–5 weeks, we do not disregard the usefulness of dy-

namical models in subseasonal-to-seasonal predictions.

For example, Vitart and Molteni (2010) found that both

MJO and its teleconnections are better represented in a

set of reforecasts with a coupled atmosphere–ocean

model. Xiang et al. (2015) showed that the upper

bound of prediction skill for the MJO can reach out to

42 days in a new version of the Geophysical Fluid Dy-

namics Laboratory (GFDL) coupled model. These

findings provide promise that ongoing improvements on

dynamical forecasts of theMJOwill likely carry through

to improve the dynamical forecasts for extratropical

teleconnection patterns. As dynamical models continue

to improve, we expect that dynamical forecast model

performance may unambiguously surpass that of statis-

tical models while also providing important tools for

understanding the mechanisms of subseasonal pre-

dictability. Nevertheless, the approach we have taken

establishes a statistical forecast benchmark while re-

maining parsimonious, which may be useful as a source

of forecast guidance. Because we are able to generate

skillful forecasts with a small subset of predictor pat-

terns, we may shed light on the large-scale conditions

that are associated with skillful predictions on the

dominant teleconnection patterns of lead times of

3–4 weeks. Although the forecast skill is fairly modest by

weeks 3–4, the identification of large-scale precursors to

teleconnection pattern development may allow us to

identify ‘‘forecasts of opportunity’’ when the expected

forecast skill is higher than normal. Further, the general

approaches that we have used may be extended to de-

velop hybrid statistical–dynamical forecast tools (e.g.,

using dynamical forecast model output as predictor

fields), which potentially can combine the advantages

from both dynamical and statistical models to help im-

prove subseasonal-to-seasonal forecast performance.
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